밑바닥부터 시작하는 딥러닝

齋藤 康毅
312p
Where to buy
content
Rating Graph
Avg 3.9(135)
0.5
4
5
Rate
3.9
Average Rating
(135)
Comment
More
[광고] 위기브 고향사랑기부제 보드배너[광고] 위기브 고향사랑기부제 보드배너

라이브러리나 프레임워크에 의존하지 않고, 딥러닝의 핵심을 ‘밑바닥부터’ 직접 만들어보며 즐겁게 배울 수 있는 본격 딥러닝 입문서이다. 술술 읽힐 만큼 쉽게 설명하였고, 역전파처럼 어려운 내용은 ‘계산 그래프’ 기법으로 시각적으로 풀이했다. 무엇보다 작동하는 코드가 있어 직접 돌려보고 요리조리 수정해보면 어려운 이론도 명확하게 이해할 수 있다. 딥러닝에 새롭게 입문하려는 분과 기초를 다시금 정리하고 싶은 현업 연구자와 개발자에게 최고의 책이 될 것이다.

🏛️ 왓챠 취향박물관 Opening Soon!

9/15 ~ 9/21, 취향을 등록해 전시에 참여하세요

왓챠

Rating Graph
Avg 3.9(135)
0.5
4
5

🏛️ 왓챠 취향박물관 Opening Soon!

9/15 ~ 9/21, 취향을 등록해 전시에 참여하세요

왓챠

Author/Translator

Comment

9

Please log in to see more comments!

Table of Contents

1장 헬로 파이썬 1.1 파이썬이란? 1.2 파이썬 설치하기 __1.2.1 파이썬 버전 __1.2.2 사용하는 외부 라이브러리 __1.2.3 아나콘다 배포판 1.3 파이썬 인터프리터 __1.3.1 산술 연산 __1.3.2 자료형 __1.3.3 변수 __1.3.4 리스트 __1.3.5 딕셔너리 __1.3.6 bool __1.3.7 if 문 __1.3.8 for 문 __1.3.9 함수 1.4 파이썬 스크립트 파일 __1.4.1 파일로 저장하기 __1.4.2 클래스 1.5 넘파이 __1.5.1 넘파이 가져오기 __1.5.2 넘파이 배열 생성하기 __1.5.3 넘파이의 산술 연산 __1.5.4 넘파이의 N차원 배열 __1.5.5 브로드캐스트 __1.5.6 원소 접근 1.6 matplotlib __1.6.1 단순한 그래프 그리기 __1.6.2 pyplot의 기능 __1.6.3 이미지 표시하기 1.7 정리 2장 퍼셉트론 2.1 퍼셉트론이란? 2.2 단순한 논리 회로 __2.2.1 AND 게이트 __2.2.2 NAND 게이트와 OR 게이트 2.3 퍼셉트론 구현하기 __2.3.1 간단한 구현부터 __2.3.2 가중치와 편향 도입 __2.3.3 가중치와 편향 구현하기 2.4 퍼셉트론의 한계 __2.4.1 도전! XOR 게이트 __2.4.2 선형과 비선형 2.5 다층 퍼셉트론이 출동한다면 __2.5.1 기존 게이트 조합하기 __2.5.2 XOR 게이트 구현하기 2.6 NAND에서 컴퓨터까지 2.7 정리 3장 신경망 3.1 퍼셉트론에서 신경망으로 __3.1.1 신경망의 예 __3.1.2 퍼셉트론 복습 __3.1.3 활성화 함수의 등장 3.2 활성화 함수 __3.2.1 시그모이드 함수 __3.2.2 계단 함수 구현하기 __3.2.3 계단 함수의 그래프 __3.2.4 시그모이드 함수 구현하기 __3.2.5 시그모이드 함수와 계단 함수 비교 __3.2.6 비선형 함수 __3.2.7 ReLU 함수 3.3 다차원 배열의 계산 __3.3.1 다차원 배열 __3.3.2 행렬의 내적 __3.3.3 신경망의 내적 3.4 3층 신경망 구현하기 __3.4.1 표기법 설명 __3.4.2 각 층의 신호 전달 구현하기 __3.4.3 구현 정리 3.5 출력층 설계하기 __3.5.1 항등 함수와 소프트맥스 함수 구현하기 __3.5.2 소프트맥스 함수 구현 시 주의점 __3.5.3 소프트맥스 함수의 특징 __3.5.4 출력층의 뉴런 수 정하기 3.6 손글씨 숫자 인식 __3.6.1 MNIST 데이터셋 __3.6.2 신경망의 추론 처리 __3.6.3 배치 처리 3.7 정리 4장 신경망 학습 4.1 데이터에서 학습한다! __4.1.1 데이터 주도 학습 __4.1.2 훈련 데이터와 시험 데이터 4.2 손실 함수 __4.2.1 평균 제곱 오차 __4.2.2 교차 엔트로피 오차 __4.2.3 미니배치 학습 __4.2.4 (배치용) 교차 엔트로피 오차 구현하기 __4.2.5 왜 손실 함수를 설정하는가? 4.3 수치 미분 __4.3.1 미분 __4.3.2 수치 미분의 예 __4.3.3 편미분 4.4 기울기 __4.4.1 경사법(경사 하강법) __4.4.2 신경망에서의 기울기 4.5 학습 알고리즘 구현하기 __4.5.1 2층 신경망 클래스 구현하기 __4.5.2 미니배치 학습 구현하기 __4.5.3 시험 데이터로 평가하기 4.6 정리 5장 오차역전파법 5.1 계산 그래프 __5.1.1 계산 그래프로 풀다 __5.1.2 국소적 계산 __5.1.3 왜 계산 그래프로 푸는가? 5.2 연쇄법칙 __5.2.1 계산 그래프에서의 역전파 __5.2.2 연쇄법칙이란? __5.2.3 연쇄법칙과 계산 그래프 5.3 역전파 __5.3.1 덧셈 노드의 역전파 __5.3.2 곱셈 노드의 역전파 __5.3.3 사과 쇼핑의 예 5.4 단순한 계층 구현하기 __5.4.1 곱셈 계층 __5.4.2 덧셈 계층 5.5 활성화 함수 계층 구현하기 __5.5.1 ReLU 계층 __5.5.2 Sigmoid 계층 5.6 Affine/Softmax 계층 구현하기 __5.6.1 Affine 계층 __5.6.2 배치용 Affine 계층 __5.6.3 Softmax-with-Loss 계층 5.7 오차역전파법 구현하기 __5.7.1 신경망 학습의 전체 그림 __5.7.2 오차역전파법을 적용한 신경망 구현하기 __5.7.3 오차역전파법으로 구한 기울기 검증하기 __5.7.4 오차역전파법을 사용한 학습 구현하기 5.8 정리 6장 학습 관련 기술들 6.1 매개변수 갱신 __6.1.1 모험가 이야기 __6.1.2 확률적 경사 하강법(SGD) __6.1.3 SGD의 단점 __6.1.4 모멘텀 __6.1.5 AdaGrad __6.1.6 Adam __6.1.7 어느 갱신 방법을 이용할 것인가? __6.1.8 MNIST 데이터셋으로 본 갱신 방법 비

Description

직접 구현하고 움직여보며 익히는 가장 쉬운 딥러닝 입문서 파이썬으로 익히는 딥러닝 이론과 구현 새로운 지식을 배울 때 설명만 들어서는 석연치 않거나 금방 잊어버리게 됩니다. 그래서 무엇보다 ‘직접 해보는 것’이 중요합니다. 이 책은 딥러닝의 기본을 ‘이론 설명’과 ‘파이썬 구현 코드’라는 투 트랙으로 설명합니다. 각 장은 주제 하나를 설명한 후 그것을 실습할 수 있도록 꾸몄습니다. 즉, 실행되는 소스 코드를 준비했습니다. 직접 실행해보세요! 소스 코드를 읽으면서 스스로 생각하고 그 생각을 반영해 실험하다 보면 확실하게 자기 것으로 만들 수 있습니다. 여러 실험을 해보면서 겪는 시행착오 역시 큰 자산이 될 것입니다. _예제 소스: https://github.com/WegraLee/deep-learning-from-scratch ★ 누구를 위한 책인가? _ 외부 라이브러리는 최소한만 이용하고 파이썬을 사용해 딥러닝 프로그램을 처음부터 구현합니다. _ 파이썬이 처음인 사람도 이해할 수 있도록 파이썬 사용법도 간략히 설명합니다. _ 실제 동작하는 파이썬 코드와 독자가 직접 실험할 수 있는 학습 환경을 제공합니다. _ 간단한 기계학습 문제부터 시작하여 궁극에는 이미지를 정확하게 인식하는 시스템을 구현합니다. _ 딥러닝과 신경망 이론을 알기 쉽게 설명합니다. _ 오차역전파법(backpropagation)과 합성곱(convolution) 연산 등 복잡해 보이는 기술을 구현 수준에서 이해할 수 있도록 설명합니다. _ 하이퍼파라미터 결정 방식, 가중치 초깃값 등 딥러닝을 활용하는 데 도움이 되는 실용적인 기술을 소개합니다. _ 배치 정규화, 드롭아웃, Adam 같은 최근 트렌드를 설명하고 구현해봅니다. _ 딥러닝이 왜 뛰어난지, 층이 깊어지면 왜 정확도가 높아지는지, 은닉층이 왜 중요한지와 같은 ‘왜’에 관한 문제도 다룹니다. _ 자율 주행, 이미지 생성, 강화학습 등, 딥러닝을 응용한 예를 소개합니다. ★ 누구를 위한 책이 아닌가? _ 딥러닝 분야의 최신 연구에 대해서는 자세히 다루지 않습니다. _ 카페(Caffe), 텐서플로(TensorFlow), 체이너(Chainer) 등의 딥러닝 프레임워크 사용법은 설명하지 않습니다. _ 딥러닝, 특히 신경망에 관한 아주 상세한 이론까지는 담지 않았습니다. _ 딥러닝의 정확도를 높이기 위한 튜닝은 자세히 설명하지 않습니다. _ 딥러닝 성능을 높여주는 GPU 기술은 구체적으로 다루지 않습니다. _ 주로 이미지 인식을 다룹니다. 자연어 처리, 음성 인식 등의 사례는 다루지 않습니다.

Collections

1

All content on this site is the property of WATCHA PEDIA and any unauthorized use, including but not limited to reproduction, republication, redistribution, quotation, crawling, AI learning, and data collection, is strictly prohibited without prior consent.

  • © 2025 by WATCHA, Inc. All rights reserved.