뉴턴의 프린키피아

안상현
364p
Where to buy

Author/Translator

Comment

1

Please log in to see more comments!

Table of Contents

프롤로그 제1장 기하학 『기하원론』과 공리 체계 유클리드 『기하원론』의 체계 작도의 기본 제2장 원뿔곡선 원뿔곡선의 정의 원뿔곡선의 역사 제3장 원 원의 정의 원의 접선 원의 원멱 정리 제4장 타원 타원의 정의 타원의 반사 법칙 타원의 접선 타원의 켤레지름 타원의 수직지름 타원의 중심과 초점 찾기 타원의 원멱 정리 타원에 외접하는 평행사변형 제5장 쌍곡선 쌍곡선의 정의 쌍곡선의 반사 법칙 쌍곡선의 접선 직각쌍곡선의 특성 쌍곡선의 원멱 정리 쌍곡선의 켤레지름 쌍곡선의 중심과 점근선과 초점 찾기 제6장 포물선 포물선의 정의 포물선의 접선 포물선의 수직지름 포물선의 초점 포물선의 반사 법칙 제7장 뉴턴의 만유인력의 법칙 아이작 뉴턴에게 바치는 에드먼드 핼리의 찬사 뉴턴의 『프린키피아』와 운동 법칙 『프린키피아』 명제 6, 정리 5, 따름정리 1 타원 궤도일 때의 만유인력의 법칙 유도 쌍곡선 궤도일 때의 민유인력 법칙 유도 포물선 궤도일 때의 만유인력 법칙 유도 케플러의 제3법칙 에필로그 『프린키피아』의 역사 아이작 뉴턴 케임브리지의 뉴턴 학파와 수학 트라이포스

Description

아름다운 원뿔곡선의 기하학으로 이해하는 만유인력의 법칙! 뉴턴이 떨어지는 사과에서 본 것은 다름 아닌 ‘달’이었다! 달이 지구를, 지구가 태양을 타원 궤도로 도는 것이 만유인력의 법칙 때문이라고? 뉴턴은 만유인력의 법칙을 어떻게 밝혀낸 것일까? 근대 과학혁명을 이끈 인류 최고의 고전 프린키피아 국내 필자가 제대로 쓴 기하학 교양서이자 과학고전 해설서 만유인력의 법칙을 밝혀낸 고전 물리학의 역작! 『프린키피아』를 기하학으로 해석하다 신간 『뉴턴의 프린키피아: 세상에서 가장 아름다운 기하학』은 아인슈타인 이전의 중력 이론이라고 할 수 있는 뉴턴의 만유인력의 법칙을 기하학으로 쉽게 풀어서 쓴 책이다. 17세기에 뉴턴은 ‘행성의 공전 궤도가 원뿔곡선이면 태양과 행성 사이의 중력은 역제곱의 법칙을 따른다’라는 사실을 처음으로 증명해냈다. 역제곱의 법칙은 만유인력의 법칙에서 힘이 태양과 행성 사이의 거리의 제곱에 반비례한다는 것이다. 뉴턴은 이 내용을 『자연 철학의 수학적 원리(Philosophiae Naturalis Principia Mathematica)』, 즉 우리가 『프린키피아』라고 알고 있는 책에 기하학 방식으로 저술하여 고전 물리학의 새로운 장을 열었다. 일반적으로 우리가 만유인력의 법칙을 미적분학과 대수학의 방식으로 이해하고 있다면, 저자 안상현은 뉴턴이 『프린키피아』에 저술한 것과 같은 기하학 방식으로 만유인력의 법칙을 풀어 썼다. 위대한 과학자 뉴턴이 발견한 물리학 법칙의 백미는 만유인력의 법칙이다. “우주의 모든 질량을 가진 물체가 거리의 제곱에 반비례하는 힘으로 서로 잡아당기고 있다”라는 이 발견을 뉴턴은 그의 역저인 프린키피아에 담아 놓았다. 하지만 기하학을 언어로 사용하여 저술된 『프린키피아』는 일반 독자들이 이해하기란 거의 불가능하다. 그래서 신간 『뉴턴의 프린키피아』는 우리가 중·고등학교 때 배우는 기하학 지식을 바탕으로 『프린키피아』를 이해보고자 저술되었다. 말하자면, 이 책은 ‘근대 과학혁명을 이끈 인류 최고의 고전을 국내 필자가 제대로 쓴 기하학 교양서이자 과학고전 해설서’인 셈이다. 작도의 기초부터 시작하는 ‘아름다운 기하학’ 지식의 향연 중고등학교 수학으로 이해하는 모두를 위한 『프린키피아』 『뉴턴의 프린키피아』에서는 먼저 중·고등학교에서 배우는 평면기하학 지식을 복습하면서 원뿔곡선의 기하학을 이해해본 다음, 그 지식을 활용하여 프린키피아의 정수인 만유인력의 법칙을 증명해본다. 또한 만유인력의 법칙으로부터 케플러가 발견한 행성 운동에 관한 법칙들이 자연스럽게 유도됨을 체험하게 된다. 즉, 뉴턴이 새로운 과학적 발견을 하게 되는 과정을 함께 체험할 수 있게끔 한 것이 특색이다. 또한 뉴턴의 생애와 케임브리지 학파에 관한 이야기, 케임브리지 학생들이 치르는 트라이포스 시험 문제도 곁들여 읽는 재미를 더하고 있다. 이 책에서 기하학 지식을 꼭 익혀야 하는 이유는 바로 뉴턴이 『프린키피아』에서 만유인력의 법칙을 기하학으로 밝혀내기 때문이다. 이를 위해 저자는 각의 이등분선, 각의 복사, 수직이등분선 등의 기본적인 작도 지식, 삼각형의 닮음과 합동 등 중학교 수학에서 배우는 기초 기하학부터 차근차근 다져간다. 이어서 원뿔을 자르는 방향에 따라 생기는 원뿔곡선의 개념을 짚고 원, 타원, 쌍곡선, 포물선 등 원뿔곡선 각각의 정의와 특징을 살펴본다. 원뿔곡선 지식을 익히면서 직접 그려볼 수 있도록 다양한 작도 방법을 곳곳에 소개한다. 1장에서는 기하학과 공리 체계의 정의와 역사를 통해 우리가 왜 기하학을 배워야 하는지, 역사적·과학적으로 공리 체계가 어떻게 발전했는지 등을 들려준다. 2장에서 6장은 본격적으로 원, 타원, 쌍곡선, 포물선 등 원뿔곡선의 원리와 특성을 소개한다. 7장에서는 앞에서 다루었던 원뿔곡선의 기하학 지식을 바탕으로 뉴턴의 만유인력의 법칙과 케플러의 제3법칙을 이끌어낸다. 에필로그에서는 뉴턴이 『프린키피아』를 출간했던 시기에 조선과 유럽에서 있었던 일들을 과학사학자의 관점에서 소개하고, 영국에서 ‘학문의 신’이라 불리는 뉴턴의 일대기와 뉴턴이 고전 물리학과 케임브리지 학파에 미친 영향력을 살펴본다. 이토록 원뿔곡선의 기하학이 중요한 이유는 행성과 혜성과 위성들, 즉 우리가 사는 지구는 물론 지구를 도는 달까지 모두 원뿔곡선으로 공전하기 때문이다. 저자는 아름다운 원뿔곡선을 한껏 맛본 뒤에 이 기하학 지식으로 바탕으로 7장에서 궤도별로 만유인력의 법칙을 유도해내며 독자와 함께 ‘유레카!’를 외친다. 끝까지 따라갈 ‘용기’를 가지고 『프린키피아』의 핵심인 만유인력의 법칙을 증명하며 유레카를 외치러 기하학 여행을 떠나자! 이 책은 그동안 기하학 지식에 목말라 있던 독자들의 갈증을 해소시켜줄 것이다. 천문학자이자 과학사학자가 들려주는 동서양의 기하학 역사에서 거대 마젤란 망원경까지 박정혁 서강대학교 물리학과 교수가 “소년 시절부터 한문에 능해 동양고전들을 원문으로 독해할 줄 아는 다재다능한 천문학자이자 역사학자”라고 추천사에서 소개했듯, 한국천문연구원 선임연구원인 저자 안상현은 학사, 석사, 박사 모두 천문학을 전공한 정통 천문학자이다. 또한 다방면으로 깊이 있는 지식을 갖춘 과학사학자이기도 하다. 저자는 이 책을 쓰기 위해 『조선왕조실록』에 등장하는 혜성에 관한 기록, 평사도법과 원뿔곡선을 설명하고 있는 중국 청나라 시대의 『서양신법역서』, 조선 시대의 삼각함수표라고 할 수 있는 『팔선표』 등 동양의 옛 문헌은 물론 유클리드의 『기하원론』, 아폴로니우스의 『원뿔곡선』, 뉴턴의 『프린키피아』와 같은 서양의 옛 문헌까지 꼼꼼하게 살폈다. 저자는 동양과 서양의 기하학 발달에 대해 역사적으로 고찰했을 뿐만 아니라 기하학 중에서도 이 책의 핵심 지식이라고 할 수 있는 원뿔곡선이 우리 일상생활에서 어떻게 활용되고 있는지 현실적인 문제도 다루었다. 예를 들어, 자동차의 헤드라이트나 손전등에서 빛을 내보낼 때, 위성 안테나로 전파를 수신할 때, 병원에서 신장 결석을 제거할 때 포물선 원리를 활용한다. 또한 현재 리처드 캐리스 반사경 연구소에서 제작 중인 거대 마젤란 망원경의 약 25미터나 되는 거대 반사경도 포물면이다. 뉴턴, 그리고 위대한 업적 『프린키피아』 “거인의 어깨 위에서 세계를 본다!” “내가 조금 더 앞을 볼 수 있었던 것은 거인들의 어깨 위에 서 있었기 때문이다.” 아이작 뉴턴이 로버트 훅(영국의 물리학자이자 천문학자)에게 보낸 편지 중 일부이다. 뉴턴은 스스로 “세상 사람들은 나를 어떻게 볼지 몰라도, 나 자신은 마치 해변에서 놀고 있는 소년과 같다고 생각한다. 때때로 좀 매끈한 조약돌이나 예쁜 조개껍데기를 줍고 기뻐하곤 하지만, 저 진리의 바다는 전혀 비밀을 드러내지 않은 채 여전히 내 앞에 펼쳐져 있다”라고 말했지만, 그는 단순한 소년이 아니었고 ‘과학의 거인’이 되었다. 아이작 뉴턴(Isaac Newton)은 1642년 12월 25일 영국 링컨셔의 작은 마을에서 태어났다. 1661년 케임브리지대학에 입학하고도 생활고 때문에 스스로 학비와 생활비를 벌어가며 공부를 했다. 1687년 『자연 철학의 수학적 원리』, 즉 『프린키피아』라는 책을 출간했고, 이 기념비적인 책은 뉴턴의 그 유명한 세 가지 법칙, 즉 ‘관성의 법칙’, ‘운동의 법칙(가속도의 법칙)’, ‘작용-반작용의 법칙’과 만유인력, 천체의 운동에 대한 내용이 담겨 있다. 그는 마침내 근대 이론과학의 선구자로서, 수학에서는 미적분법을 창시하고 물리학에서는 역학의 체계를 확립한 것이다. 이러한 공로로 그는 1703년 영국왕립협회 회장으로 추천되고, 1705년 기사 칭호를 얻었다. 평생을 독신으로 살아간 그는 1727년 3월 20일 생을 마감했는데, 민간인으로는 최초로 웨스트민스터사원에 묻혔다. 뉴턴의 위대한 업적 『프린키피아』는 총 3권으로 구성된다. 제1권에는 ‘관성의 법칙’, ‘운동의 법

Collections

4

All content on this site is the property of WATCHA PEDIA and any unauthorized use, including but not limited to reproduction, republication, redistribution, quotation, crawling, AI learning, and data collection, is strictly prohibited without prior consent.

  • WATCHA, Inc.
  • CEO, Taehoon Park
  • 343, Gangnam-daero, Seocho-gu, Seoul, Republic of Korea
  • Corporate Registration Number 211-88-66013