1장. 딥러닝과 텐서플로의 만남
__1.1 인공지능, 머신러닝 그리고 딥러닝
__1.2 왜 텐서플로인가?
2장. 텐서플로 설치와 주피터 노트북
__2.1 파이썬 및 필수 라이브러리 설치하기
__2.2 텐서플로 예제 내려받고 실행해보기
__2.3 주피터 노트북
3장. 텐서플로 프로그래밍 101
__3.1 텐서와 그래프 실행
__3.2 플레이스홀더와 변수
__3.3 선형 회귀 모델 구현하기
4장. 기본 신경망 구현
__4.1 인공신경망의 작동 원리
__4.2 간단한 분류 모델 구현하기
__4.3 심층 신경망 구현하기
5장. 텐서보드와 모델 재사용
__5.1 학습 모델 저장하고 재사용하기
__5.2 텐서보드 사용하기
__5.3 더 보기
6장. 헬로 딥러닝, MNIST
__6.1 MNIST 학습하기
__6.2 드롭아웃
__6.3 matplotlib
7장. 이미지 인식의 은총알, CNN
__7.1 CNN 개념
__7.2 모델 구현하기
__7.3 고수준 API
__7.4 더 보기
8장. 대표적 비지도 학습법, Autoencoder
__8.1 오토인코더 개념
__8.2 오토인코더 구현하기
9장. 딥러닝의 미래, GAN
__9.1 GAN 기본 모델 구현하기
__9.2 원하는 숫자 생성하기
__9.3 더 보기
10장. 번역과 챗봇 모델의 기본, RNN
__10.1 MNIST를 RNN으로
__10.2 단어 자동 완성
__10.3 Sequence to Sequence
__10.4 더 보기
11장. 구글의 핵심 이미지 인식 모델, Inception
__11.1 자료 준비
__11.2 학습시키기
__11.3 예측 스크립트
__11.4 더 보기
12장. 딥마인드가 개발한 강화학습, DQN
__12.1 DQN 개념
__12.2 게임 소개
__12.3 에이전트 구현하기
__12.4 신경망 모델 구현하기
__12.5 학습시키기
__12.6 더 보기