출판사 제공 책 소개

불을 만지기 전 불을 다루는 법 배우기 구글, 테슬라, 뉴욕타임스, 아마존, 애플 등 글로벌 테크 기업들의 사례로 복잡한 코드 없이 AI 개발의 실제와 이해를 돕는 실무 가이드 AI를 개발하는 일은 매우 복잡하고, 빅테크 기업만 할 수 있는 거대한 일처럼 느껴진다. 하지만 AI는 이미 우리 곁에 공기처럼 존재한다. 사람들은 AI 기반 시스템을 누리며 살고 있다는 사실조차 인식하지 못한다. 일할 때나 운전할 때, 점심 메뉴를 고를 때나 운동할 때 사람들은 AI를 활용하며 보이지 않는 기술의 혜택을 누리고 있다. 이제 AI 전략이 없는 기업은 2002년에 웹 전략이나 2008년에 모바일 전략을 포기한 회사와 다르지 않다. 시장에서 도태되지 않고 살아남으려면 AI가 반드시 필요한 세상이 됐다. 이 책은 IBM의 대표 AI인 왓슨 개발에 참여하고 빅테크 기업부터 스타트업까지 다양한 머신러닝 조직에서 AI개발의 성공을 이끈 미국의 두 머신러닝 전문가, 얼리슨 심프슨 로크워거와 윌슨 팡이 빅테크 AI 기업들의 현장 이야기를 바탕으로 AI 개발 착수부터 조직 구성, 의제 설정, 데이터 수급 전략, 파일럿 설정, AI 리더십 등 개발과 경영에 꼭 필요한 AI 성공 로드맵을 제공한다. 구글과 애플, 페이스북, 테슬라, 아마존, 뉴욕타임스 등의 빅테크 기업부터 실리콘밸리에서 각축전을 벌이는 머신러닝 기업들의 성공과 실패담을 분석해 성공에 도달할 수 있는 지름길을 안내한다. AI를 활용해 업계에서 경쟁우위를 차지하는 길은 녹록지 않다. 하지만 이 책의 사례를 참고하면 성공 확률은 훨씬 높아질 것이다. AI 프로젝트 성패를 좌우하는 첫 단추, ‘골디락스 문제’ 설정하기 데이터가 많고 빨리 해결할 수 있는 가장 작은 ‘골디락스 문제’를 찾아 ROI로 증명하라. 이렇게 입증된 성공은 조직의 신뢰와 인정을 이끌어내 AI 사업에 추진력을 얻고 강력한 리더십을 발휘할 수 있다. 너무 차갑지도 뜨겁지도 않은 딱 좋은 상태라는 개념의 ‘골디락스 문제’ 설정은 최소한의 비용으로 AI의 강력한 성과를 보여줄 수 있는 첫 단추다. 오토캐드나 3ds Max 등의 건축 설계 소프트웨어 서비스를 제공하는 기업 오토데스크는 구식 고객 서비스로 고객들의 불만이 자자했다. 평범한 문의사항을 처리하는 데 하루가 넘게 걸려 전문가 고객들은 업무시간에 손을 놓고 있어야 했다. 그래서 오토데스크가 수백 가지 고객 불만을 처리하기 위해 AI를 도입하기로 결정하고 압도적인 비중을 차지하는 단 하나의 문제를 해결하는 데 집중하기로 했다. 바로 비밀번호 재설정 요청이었다. “로그인이 안 돼요”, “비밀번호 재설정이 안 돼요”라는 문의 요청을 골라내는 일은 자연어 처리에 적합했고 사내에 방대한 데이터가 쌓여 있었다. 이 환상적인 골디락스 문제 설정으로 빠르게 AI 솔루션을 구축해 성공을 증명할 수 있었고, 이에 고무된 오토데스크는 조직 전체에 AI 투자를 대대적으로 늘려 AI 친화적인 기업으로 변신했다.(본문 79쪽) 세계 기업들의 AI의 도입 과정과 편향 대처법 전통적인 기업에 AI가 가져온 혁신은 놀랍다. 미국의 대표적인 미디어 기업 뉴욕타임스는 ‘인쇄 매체의 죽음’이라 불리던 패러다임에서 악성 댓글 관리 등 사내 문제를 해결하기 위해 AI를 도입한 후 점차 영역을 넓혀나가며 디지털 테크놀로지 기업으로 진화해 유료 회원수도 700만 명에 달하는 등 종이신문에서 디지털 매체로 혁신하는 데 성공했다.(본문 173쪽) 이 외에도 책에는 IBM과 협업해 AI 드레스를 만든 패션 브랜드 마르케사와 AI 도입으로 회생에 성공한 이베이의 이야기, AI로 혁신을 이끈 밀라노의 전통 패션 기업 사례, 재고 정리를 위해 AI를 도입한 월마트의 이야기, 농업에 혁신을 가져온 농기구 기업 블루리버 테크놀로지 등 AI를 통해 혁신을 이룬 각기 다른 업종의 사례를 소개한다. 또 AI를 개발해 배포하는 과정에서 숙명적으로 나타나는 편향과 이를 해결하기 위한 기업들의 분투기도 담겨 있다. 애플이 출시한 신용카드에서 성별 편향으로 남성과 여성의 신용한도가 크게 달라 논란에 휩싸였던 에피소드, 성 편향 번역을 해결하기 위한 구글의 고육지책, 16시간 만에 중단된 마이크로소프트의 신제품 테이 이야기, 잘못된 머신러닝으로 감옥에 가게 된 소녀의 사례 등을 통해 AI의 편향이 가져올 수 있는 기술의 이면을 이야기하며 책임 있는 개발을 강조한다. 저자는 AI의 광범위한 힘을 다루는 사람이라면 윤리적인 기준을 세우고 거버넌스를 마련해 세상에 도움이 되는 제품을 만들어야 한다고 말한다. 책임 있는 AI 개발은 막연히 좋은 것이 아니라 개발자의 커리어와 기업의 이미지와 매출에도 도움이 된다는 것을 실제 AI 개발 과정의 성공과 실패담으로 증명한다. 이제 AI를 이해하지 못하는 기업은 화석이 될 것이다 AI모델은 어렵다. 지구상에서 가장 크고, 마음대로 사용할 수 있는 모든 자원을 가진 회사라도 크고작은 문제에 직면하게 된다. 책에 소개됐듯 인터넷 서점으로 시작한 아마존은 AI 기업으로 거듭나기까지 무수한 실패를 겪고 조롱을 당하는 등 고된 여정을 거쳐 지금에 이르렀다(175쪽). 테슬라도 자체 자율주행 기능인 오토파일럿의 오류로 여러 운전자들이 상해 사고를 당하는 비극을 겪었지만 이를 견디며 묵묵히 기술을 끌어올려 최근 우주 탐사 산업까지 성공시키고 있다. 이들뿐만 아니라 구글, 트위터, 마이크로소프트 같은 빅테크 기업도 계속해서 벌어지는 도전 과제를 극복하며 진화하고 있다. 세계를 주도하는 빅테크 기업들은 이러한 강력한 AI 리더십으로 끈질기게 기술 중심의 경영을 이끌어 전세계의 부를 흡수하고 있다. 이 기업들은 모두 마르지 않는 데이터에 집착하며 성공 가능한 파일럿을 디자인하고 강력한 데이터 파이프라인을 구축하고 있다. AI를 통한 성공의 핵심은 작게 시작해 꾸준히 실행하는 것이다. 이 책은 AI를 통한 성공은 생각보다 가까운 곳에 있다고 말한다. “당신이 무슨 일을 하든 인공지능, 딥러닝, 머신러닝을 이해하지 못한다면 반드시 배워야 한다. 그렇지 않으면 3년 안에 화석이 되어 있을 것”이라는 미국 기업가의 말처럼 이제 AI는 리더십이나 조직 관리처럼 경영자가 반드시 배워야 하는 과정이 되고 있다. 압축해서 다가오는 미래에 시장에서 경쟁하기 위해 AI를 고민한다면 이 책이 강력한 마일스톤이 되어줄 것이다.