혼자 공부하는 머신러닝 + 딥러닝

박해선
580p
구매 가능한 곳

저자/역자

목차

Chapter 01 나의 첫 머신러닝 ▶?이 생선의 이름은 무엇인가요? __ 01-1 인공지능과 머신러닝, 딥러닝 ▶? 인공지능과 머신러닝, 딥러닝은 무엇일까요? ____ 인공지능이란 ____ 머신러닝이란 ____ 딥러닝이란 ____ 키워드로 끝내는 핵심 포인트 ____ 이 책에서 배울 것은 __ 01-2 코랩과 주피터 노트북 ▶?코랩과 주피터 노트북으로 손코딩 준비하기 ____ 구글 코랩 ____ 텍스트 셀 ____ 코드 셀 ____ 노트북 ____ 키워드로 끝내는 핵심 포인트 ____ 표로 정리하는 툴바와 마크다운 ____ 확인 문제 __ 01-3 마켓과 머신러닝 ▶?마켓을 예로 들어 머신러닝을 설명합니다. ____ 생선 분류 문제 ____ 첫 번째 머신러닝 프로그램 ____ [문제해결 과정] 도미와 빙어 분류 ____ 키워드로 끝내는 핵심 포인트 ____ 핵심 패키지와 함수 ____ 확인 문제 Chapter 02 데이터 다루기 ▶?수상한 생선을 조심하라! __ 02-1 훈련 세트와 테스트 세트 ▶? 모델을 훈련 시키는 훈련 세트와 검증하는 테스트 세트로 나누어 학습하기 ____ 지도 학습과 비지도 학습 ____ 훈련 세트와 테스트 세트 ____ 샘플링 편향 ____ 넘파이 ____ 두 번째 머신러닝 프로그램 ____ [문제해결 과정] 훈련 모델 평가 ____ 키워드로 끝내는 핵심 포인트 ____ 핵심 패키지와 함수 ____ 확인 문제 __ 02-2 데이터 전처리 ▶?정교한 결과 도출을 위한 데이터 전처리 알아보기 ____ 넘파이로 데이터 준비하기 ____ 사이킷런으로 훈련 세트와 테스트 세트 나누기 ____ 수상한 도미 한 마리 ____ 기준을 맞춰라 ____ 전처리 데이터로 모델 훈련하기 ____ [문제해결 과정] 스케일이 다른 특성 처리 ____ 키워드로 끝나는 핵심 포인트 ____ 핵심 패키지와 함수 ____ 확인 문제 Chapter 03 회귀 알고리즘과 모델 규제 ▶?농어의 무게를 예측하라! __ 03-1 k-최근접 이웃 회귀 ▶?회귀 문제를 이해하고 k-최근접 이웃 알고리즘으로 풀어 보기 ____ k-최근접 이웃 회귀 ____ 데이터 준비 ____ 결정계수(R2) ____ 과대적합 vs 과소적합 ____ [문제해결 과정] 회귀 문제 다루기 ____ 키워드로 끝내는 핵심 포인트 ____ 핵심 패키지와 함수 ____ 확인 문제 __ 03-2 선형 회귀 ▶? 사이킷런으로 선형 회귀 모델 만들어 보기 ____ k-최근접 이웃의 한계 ____ 선형 회귀 ____ 다항 회귀 ____ [문제해결 과정] 선형 회귀로 훈련 세트 범위 밖의 샘플 예측 ____ 키워드로 끝내는 핵심 포인트 ____ 핵심 패키지와 함수 ____ 확인 문제 __ 03-3 특성 공학과 규제 ▶?특성 공학과 규제 알아보기 ____ 다중 회귀 ____ 데이터 준비 ____ 사이킷런의 변환기 ____ 다중 회귀 모델 훈련하기 ____ 규제 ____ 릿지 회귀 ____ 라쏘 회귀 ____ [문제해결 과정] 모델의 과대적합을 제어하기 ____ 키워드로 끝내는 핵심 포인트 ____ 핵심 패키지와 함수 ____ 확인 문제 Chapter 04 다양한 분류 알고리즘 ▶?럭키백의 확률을 계산하라! __ 04-1 로지스틱 회귀 ▶?로지스틱 회귀 알고리즘을 배우고 이진 분류 문제에서 클래스 확률 예측하기 ____ 럭키백의 확률 ____ 로지스틱 회귀 ____ [문제해결 과정] 로지스틱 회귀로 확률 예측 ____ 키워드로 끝내는 핵심 포인트 ____ 핵심 패키지와 함수 ____ 확인 문제 __ 04-2 확률적 경사 하강법 ▶?경사 하강법 알고리즘을 이해하고 대량의 데이터에서 분류 모델을 훈련하기 ____ 점진적인 학습 ____ SGDClassifier ____ 에포크와 과대/과소적합 ____ [문제해결 과정] 점진적 학습을 위한 확률적 경사 하강법 ____ 키워드로 끝내는 핵심 포인트 ____ 핵심 패키지와 함수 ____ 확인 문제 Chapter 05 트리 알고리즘 ▶?화이트 와인을 찾아라! __ 05-1 결정 트리 ▶

출판사 제공 책 소개

- 혼자 해도 충분하다! 1:1 과외하듯 배우는 인공지능 자습서 이 책은 수식과 이론으로 중무장한 머신러닝, 딥러닝 책에 지친 '독학하는 입문자'가 '꼭 필요한 내용을 제대로' 학습할 수 있도록 구성했다. 구글 머신러닝 전문가(Google ML expert)로 활동하고 있는 저자는 여러 차례의 입문자들과 함께한 머신러닝&딥러닝 스터디와 번역·집필 경험을 통해 '무엇을' '어떻게' 학습해야 할지 모르는 입문자의 막연함을 이해하고, 과외 선생님이 알려주듯 친절하게 핵심적인 내용을 콕콕 집어준다. 컴퓨터 앞에서 [손코딩]을 따라하고, 확인 문제를 풀다 보면 그간 어렵기만 했던 머신러닝과 딥러닝을 개념을 스스로 익힐 수 있을 것이다! - 베타리더가 함께 만든 입문서 베타리딩 과정을 통해 입문자에게 적절한 난이도, 분량, 학습 요소 등을 고민하고 반영했다. 어려운 용어와 개념은 한 번 더 풀어 쓰고, 복잡한 설명은 눈에 잘 들어오는 그림으로 풀어 냈다. '혼자 공부해본' 여러 입문자의 마음과 눈높이가 책 곳곳에 반영된 것이 이 책의 가장 큰 장점이다. 누구를 위한 책인가요? - 인공지능, 머신러닝, 딥러닝 학습의 필요성을 인지하고 파이썬 정도의 기초 프로그래밍 언어를 입문한 독자 - 머신러닝, 딥러닝에 관심은 있지만 너무 어려운 내용으로 시도가 힘들었던 독자 - 개념만 어렴풋이 아는 데 그쳐버리거나 여전히 각 의미가 헷갈려 제대로 낮은 단계부터 다시 배우려는 독자 도서 특징 하나, 탄탄한 학습 설계 : '입문자 맞춤형 7단계 구성'을 따라가며 체계적으로 반복 학습한다 이 책은 머신러닝과 딥러닝의 핵심 내용을 7단계에 걸쳐 반복 학습하면서 자연스럽게 머릿속에 기억되도록 구성했다. 모든 절에서 [핵심 키워드]와 [시작하기 전에]를 통해 각 절의 주제에 대한 대표 개념을 워밍업한 후, 이론과 실습을 거쳐 마무리에서는 [핵심 포인트]와 [확인 문제]로 한번에 복습한다. '혼자 공부할 수 있는' 커리큘럼을 그대로 믿고 끝까지 따라가다 보면 인공지능 공부가 난생 처음인 입문자도 무리 없이 책을 끝까지 마칠 수 있다! 둘, 파이썬만 안다면 프로젝트별 '손코딩'으로 머신러닝과 인공지능을 제대로 익힌다 파이썬 기초 지식이 있는 독자라면 이론 설명은 두 눈과 머리로 술술 읽으며 넘어가고, 직접 손코딩하며 실전 감각을 익히도록 엄선된 프로젝트 실습 예제를 담았다. 반복 학습과 연습이 가장 필수적인 입문자도, 실전형 코드로 연습하면서 책에 담긴 코드를 '나의 코드'로 만들 수 있다. 7장부터 시작하는 딥러닝은 머신러닝 중 4장 내용을 반복 학습한 다음에 익히도록 한다. 셋, '혼공'의 힘을 실어줄 동영상 강의, 학습 사이트 지원 http://hongong.hanbit.co.kr 책으로만 학습하기엔 여전히 어려운 입문자를 위해 저자 직강 동영상도 지원한다. 또 학습을 하며 궁금한 사항은 언제든 질문할 수 있도록 학습 사이트를 제공한다. 저자가 질문 하나하나 직접 답변하고 있으며, 관련 최신 기술과 정보도 공유한다. 게다가 혼자 공부하는 그 길에 함께 공부하기를 원하는 사람들의 모임인 혼공 학습단을 운영하여 마지막까지 포기하지 않고 독자가 완주할 수 있도록 최대한 지원하고 있다. 넷, 언제 어디서든 가볍게 볼 수 있는 혼공 필수 [용어 노트] 제공 꼭 기억해야 할 핵심 개념과 용어만 따로 정리한 [용어 노트]를 제공한다. 처음 프로그래밍에 입문하는 사람에게 낯선 용어가 어렵듯이 머신러닝과 딥러닝을 처음 접하는 사람에게도 낯선 용어가 진입 장벽이 된다는 것을 베타리더를 통해 확인했고, 어려운 것이 아니라 익숙하지 않아서 헷갈리는 것이므로 잘 생각나지 않을 때는 언제든 부담 없이 펼쳐보자. 제시된 용어 외에도 새로운 용어를 추가하면서 자신만의 용어 노트를 완성해가는 것도 또 다른 재미가 될 것이다. 다섯, 스토리텔링 속 주인공과 함께 독자도 성장 낯설고 어렵기만 한 이론을 풀기 위해서 한빛 마켓에 입사한 신입사원이 업무에서 머신러닝, 딥러닝을 어떻게 활용하는지를 스토리텔링으로 풀었다. 앱에 새로운 기능을 더해가는 신입사원의 이야기를 통해 독자도 함께 머신러닝, 딥러닝을 학습할 수 있도록 구성했다. 각 절의 끝에는 [문제해결 과정]을 두어 신입사원이 어떤 과정을 통해 문제를 해결했는지 간략하게 정리한다. 먼저 읽은 베타리더들의 한 마디 - 이 책 하나만 있어도 충분히 인공지능 기초를 다질 수 있다고 자신있게 얘기할 수 있습니다. _이동훈 님 - 기초 개념과 핵심 키워드, 복습을 도와주는 마무리, 확인 문제 등 내용이 알차서 머신러닝과 딥러닝을 처음 시작하는 입문자에게 많은 도움이 될 것 같아 추천합니다. _이석곤 님 - 책 속의 주인공이 문제를 해결하며 머신러닝 개발자로 성장하는 과정을 통해 머신러닝을 어떻게 활용할지 자연스럽게 습득할 수 있습니다. _김윤태 님 - 컴퓨터 설정부터 차근차근 알려주는 책이라 좋았습니다. 의료나 산업, 경영 등에도 접목할 수 있으리라 기대합니다. _김현수 님 - 일상 비즈니스를 사례로 들고 쉬운 알고리즘을 활용해 머신러닝의 개념을 익힐 수 있습니다. 코랩을 활용한 덕에 초보자에게 진입 장벽을 낮춰줍니다. _허민 님 - “조금 더 공부하고 싶다”란 생각을 가질 수 있게 해준 책이라 더욱 고맙게 느껴집니다. _도혜리 님 - 이론을 충실하게 설명하면서도 이론을 체감할 수 있는 코드의 배치도 아주 절묘합니다. 독학으로 딥러닝 실무를 익히기 위한 책을 한 권만 고르라면 이 책이지 않을까요? _ 임지순 님

이 작품이 담긴 컬렉션

2

본 사이트의 모든 콘텐츠는 왓챠피디아의 자산이며, 사전 동의 없이 복제, 전재, 재배포, 인용, 크롤링, AI학습, 데이터 수집 등에 사용하는 것을 금지합니다.

  • 주식회사 왓챠
  • 대표 박태훈
  • 서울특별시 서초구 강남대로 343 신덕빌딩 3층
  • 사업자 등록 번호 211-88-66013