1 더하기 1은 2인가

존 D. 배로
184p
구매 가능한 곳

저자/역자

코멘트

2

더 많은 코멘트를 보려면 로그인해 주세요!

목차

감수의 말 머리말 1장. 1+1은 진짜로 어려울까? 2장. 손가락과 발가락: 셈의 기원 3장. 밑을 바꾸기: 비트와 바이트 4장. 수의 정의 5장. 집합의 덧셈 6장. 화이트헤드와 러셀의 1+1=2 증명 7장. 초한 산술 8장. 괴델의 불완전성 9장. 하나와 둘은 왜 그렇게 자주 나타날까? 10장. 수학이란 무엇인가

출판사 제공 책 소개

★★★ ⟪수학이 필요한 순간⟫ 김민형 교수 추천! ★★★ “수학철학 전반을 독창적으로 설명하며, 중요한 개념의 세계로 호기심 많은 독자를 초대한다.” 우주론을 연구하던 수학자이자 케임브리지대학 교수였던 존 배로가 생애 마지막으로 남긴 가장 단순하고도 심오한 질문 ‘1+1=2’는 ‘확실하고 뻔한 것’의 대명사처럼 쓰이는 말이자, 우리가 수학을 배울 때 처음 마주치는 가장 단순한 수식이기도 하다. 하지만 이런 질문을 생각해보자. 하지만 정말 하나에 하나를 더하면 언제나 같은 것이 두 개가 될까? 배 하나 더하기 사과 하나는 무엇일까? 똑같은 파동 둘을 더하는데 둘의 위상이 정반대라면 파동 두 개가 되지 않는다. 영에 영을 더하면 영이 둘이고, 이것은 영이다. 무한에 무한을 더하면 무한이 된다. 이 책은 ‘1+1=2’라는 수식을 매개로 사물 속에 숨겨진 패턴과 수학의 본질을 찾아 나서는 책이다. 이 연산은 간단하고 기본적인 만큼 수학에 대해 근본적인 의문을 제기할 수 있는 통로가 되어 결국 ‘수학이란 무엇인가’라는 질문으로 우리를 이끌고 간다. 우주론을 연구하던 수학자이자 케임브리지대학 교수였던 존 배로가 생애 마지막으로 남긴 가장 단순하고도 심오한 질문 “그건 1 더하기 1이 2인 것처럼 확실해.” 이런 말을 들어보았을 것이다. 이처럼 1+1=2는 ‘확실하고 뻔한 것’의 대명사처럼 쓰이는 말이자, 우리가 수학을 배울 때 처음 마주치는 가장 단순한 수식이기도 하다. 하지만 여기 정말 1 더하기 1이 2인지를 생의 마지막 탐구 주제로 삼은 수학자가 있다. 존 배로는 영국의 수학자, 이론물리학자, 우주론 학자로 케임브리지 대학교의 응용수학 및 이론물리학 교수이자 수학의 대중화를 위한 밀레니엄 수학 프로젝트의 책임자였다. 그는 우주론 연구로 학자로서의 여정을 시작했는데, 이것이 이후에 그가 수학자로 살면서도 존재의 근본에 관한 철학적 탐구를 이어가는 데에 영향을 주었다. 이에 관해 김민형 교수는 이렇게 말하기도 했다. “물리학자에게 수학적 구조의 정체성 문제는 좋든 싫든 집요하게 다가온다. 그래서 ‘우주란 무엇인가’라는 질문으로부터 출발한 저자는 자연스럽게 ‘수학이란 무엇인가’를 묻다가 시간이 지나면서 결국 ‘1 더하기 1은 어째서 2인가’로 탐구가 귀결되었다는 인상이 책의 구성에 전체적으로 스며들어 있다.” 그렇다면 저자는 정말이지 왜 이런 책을 쓰게 된 것인지, 직접 그의 목소리를 통해 들어보자. “여러분이 지금 읽으려는 책은 제가 마지막으로 쓴 책이고, 저는 이제 더 이상은 쓰지 못할 것 같습니다. 이 책에서 저는 수에 대해 중요한 몇 가지를 말하려고 합니다. 많은 사람들은 1+1=2와 같은 연산이 너무나 단순해서 특별히 주의를 기울일 이유가 없다고 생각합니다. 하지만 우리는 이 기초적인 연산의 복잡한 면을 탐구하려고 합니다. 우리는 서로 다른 사물을 더할 때 생기는 미묘한 난점에 대해 알아볼 것입니다. 이 문제를 다룬 19세기와 20세기의 가장 위대한 수학자들에 대해서도 살펴볼 것이며, 그들이 이 문제를 풀고 덧셈을 명료하게 이해하기 위해 어떤 생각을 했는지도 알아보겠습니다. 무한에 대해서도 알아보고, 무한을 더하는 법을 배워보며, 무한이 수학의 대상으로 적합한지에 대한 논쟁도 살펴볼 것입니다. 괴델의 유명한 불완전성 정리를 공부하고, 마지막으로 수학이란 도대체 무엇인지에 대한 격렬한 논쟁에 대해서도 알아보겠습니다.”_14~15쪽, 〈서문〉 중에서 우리가 딛고 선 수학 체계의 주춧돌, ‘1+1=2’ 수학이란 무엇인가, 그리고 수학이 던지는 존재의 수수께끼 1+1=2라는 수식은 간단하고 기본적인 만큼 수학에 대해 근본적인 의문을 제기할 수 있는 매개가 되기도 한다. 얇지만 단단한 이 책에서 그는 열 개의 장에 걸쳐 그러한 문제 제기가 어떻게 가능한지를 역사적·물리적·순수수학적인 사례와 더불어 하나하나 보여준다. 몇 가지 질문을 살펴보자. “배 하나 더하기 사과 하나는 무엇일까? 이것은 배 두 개나 사과 두 개가 아니다. 기호 ‘+’와 ‘=’는 무엇인가? 이것들은 진짜로 무슨 뜻일까? 똑같은 파동 둘을 더하는데 둘의 위상이 정반대이면, 파동 하나의 마루가 다른 파동의 골과 일치해서 영이 된다. 파동 두 개가 되지 않는 것이다. 영에 영을 더하면 영이 둘이고, 이것은 영이다. 무한에 무한을 더하면 무한이 된다. 이것들의 합은 하나에 하나를 더해서 같은 것이 둘이 되는 패턴을 따르지 않는다. 사물은 의외로 단순하지 않다.”(21~22쪽, 〈1장. 1+1은 진짜로 어려울까?〉 중에서) 이 책이 1+1=2와 같은 연산에 집중하는 이유는 수학이 ‘추상화’라는 과정으로부터 시작된 학문이기 때문일 것이다. 사과 하나, 파동 하나, 0 하나 등 세상의 모든 하나는 1이라는 수로 환원되는데, 이 환원에 바탕을 두고 있는 덧셈이라는 연산이 과연 모든 사물에 보편적으로 적용할 수 있을 만큼 타당한가 하는 것이다. 이것은 지금의 수학 체계를 떠받치고 있는 주춧돌에 관한 의문이기에, 많은 것을 무너뜨릴 수 있는 강력한 질문이기도 하다. 예를 들어 1과 –1을 번갈아가며 무한하게 더하는 수식 S가 있다고 하자. 그리고 양변에 각각 같은 식을 더해보자. 그러면 2S=1-1+1-1+1-1…=S가 된다. 그렇다면 2S=S이므로 2=1이 된다(27쪽). 공리 체계에서 논리적 모순이 하나라도 있으면 그것을 사용해서 모든 것이 참이라고 증명할 수 있기 때문에 모든 산술이 무너져버린다. 이를 보여주는 재미있는 사례가 있다. 수학자이자 철학자였던 버트런드 러셀은 강연에서 2=1이 참이라면 모든 것이 참이라고 증명할 수 있다고 말했는데, 한 학생은 이를 수긍하지 못해 그렇다면 러셀 자신이 교황임을 증명해보라고 했다. 러셀은 주저하지 않고 이렇게 대답했다. “나와 교황만 포함하는 집합이 있다고 하자. 이 집합의 원소는 둘이다. 그러나 2=1이므로, 이 집합의 원소는 하나뿐이다. 따라서 나는 교황이다.”(28쪽) 뭔가 이상하지만, 어떻게 반박해야 할지 모르겠다. 그렇다면 이 책을 찬찬히 읽어보자. 이 책은 어렵지 않은 수식들과 함께 우리가 흔히 자연수의 공리화, 수학의 집합론적 모델, 화이트헤드와 러셀의 기초론, 무한대의 산술 이론, 괴델의 불완전성 정리, 뉴컴-벤포드의 법칙 등으로 불리는 개념을 설명해내면서 가장 단순한 수식을 통해 갈 수 있는 가장 먼 수학적 사유까지 우리를 데려간다. 평생 수학을 연구한 친구와 나누는 대화 같은 책 ‘1+1=2’라는 실타래를 들고 걸어가 미로 속에서 만나게 되는 것 수학이 우리를 가장 곤란스럽게 만드는 지점은 어디일까? 정규 교육 과정을 거쳐온 대다수의 한국인에게 그것은 아마도 수학이 왜 필요한지 모르겠다는 점일 것이다. 2020년 8월 미국의 한 고등학생이 틱톡에 ‘수학이 진짜라는 것을 어떻게 알 수 있는가, 사칙연산 외에 수학적 개념들이 왜 필요하며 누가 생각해냈는가’라고 묻는 영상을 올렸다. 여기에는 “지금껏 본 것 중 가장 멍청한 영상”이라는 등 수없는 비난과 조롱이 쏟아졌으나, 수학자 유지니아 쳉, 조던 엘렌버그, 물리학자 숀 캐럴 등 유수의 학자들은 이것이 “매우 훌륭한 질문”이며, 학생이 “수학자보다 더 수학적으로 생각한다”며 답변과 격려를 보낸 사건이 있었다. 수학을 잘한다는 것은 복잡한 방적식을 쉽게 풀어내고 공식이나 법칙을 빠르게 기억해내서 기술적으로 잘 활용한다는 말도 되겠지만, 수와 기호들의 의미가 무엇이며 인간이 이 언어를 사용하여 무엇을 하려고 했고 무엇을 할 수 있는지를 잘 이해하고 있다는 뜻이기도 하다. 이 책은 후자의 의미에서 수학을 잘하도록 돕는 책이다. 미국의 고등학생도 이런 맥락에서 “수학자보다 더 수학적으로 생각한다”라는 말을 들었을 것이다. “‘수학이란 무엇인가’라는 질문은 이 책 마지막 장의 제목이고,

이 작품이 담긴 컬렉션

1

본 사이트의 모든 콘텐츠는 왓챠피디아의 자산이며, 사전 동의 없이 복제, 전재, 재배포, 인용, 크롤링, AI학습, 데이터 수집 등에 사용하는 것을 금지합니다.

  • 주식회사 왓챠
  • 대표 박태훈
  • 서울특별시 서초구 강남대로 343 신덕빌딩 3층
  • 사업자 등록 번호 211-88-66013